31,940 research outputs found

    Simplified PBEE to Estimate Economic Seismic Risk for Buildings

    Get PDF
    A seismic risk assessment is often performed on behalf of a buyer of large commercial buildings in seismically active regions. One outcome of the assessment is that a probable maximum loss (PML) is computed. PML is of limited use to real-estate investors as it has no place in a standard financial analysis and reflects too long a planning period for what-if scenarios. We introduce an alternative to PML called probable frequent loss (PFL), defined as the mean loss resulting from an economic-basis earthquake such as shaking with 10% exceedance probability in 5 years. PFL is approximately related to expected annualized loss (EAL) through a site economic hazard coefficient (H) introduced here. PFL and EAL offer three advantages over PML: (1) meaningful planning period; (2) applicability in financial analysis (making seismic risk a potential market force); and (3) can be estimated by a rigorous but simplified PBEE method that relies on a single linear structural analysis. We illustrate using 15 example buildings, including a 7-story nonductile reinforced-concrete moment-frame building in Van Nuys, CA and 14 buildings from the CUREE-Caltech Woodframe Project

    Effect of interfacial oxide layers on the current-voltage characteristics of Al-Si contacts

    Get PDF
    Aluminum-silicon contacts with very thin interfacial oxide layers and various surface impurity concentrations are studied for both n and p-type silicon. To determine the surface impurity concentrations on p(+)-p and n(+)-n structures, a modified C-V technique was utilized. Effects of interfacial oxide layers and surface impurity concentrations on current-voltage characteristics are discussed based on the energy band diagrams from the conductance-voltage plots. The interfacial oxide and aluminum layer causes image contrasts on X-ray topographs

    Accounting for Seismic Risk in Financial Analysis of Property Investment

    Get PDF
    A methodology is presented for making property investment decisions using loss analysis and the principles of decision analysis. It proposes that the investor choose among competing investment alternatives on the basis of the certainty equivalent of their net asset value which depends on the uncertain discounted future net income, uncertain discounted future earthquake losses, initial equity and the investor’s risk tolerance. The earthquake losses are modelled using a seismic vulnerability function, the site seismic hazard function, and an assumption that strong shaking at a site follows a Poisson process. A building-specific vulnerability approach, called assembly-based vulnerability, or ABV, is used. ABV involves a simulation approach that includes dynamic structural analyses and damage analyses using fragility functions and probability distributions on unit repair costs and downtimes for all vulnerable structural and nonstructural components in a building. The methodology is demonstrated using some results from a seven-storey reinforced-concrete hotel in Los Angeles

    Simplified Estimation of Economic Seismic Risk for Buildings

    Get PDF
    A seismic risk assessment is often performed on behalf of a buyer of commercial buildings in seismically active regions. One outcome of the assessment is that a probable maximum loss (PML) is computed. PML is of limited use to real-estate investors as it has no place in a standard financial analysis and reflects too long a planning period. We introduce an alternative to PML called probable frequent loss (PFL), defined as the mean loss resulting from shaking with 10% exceedance probability in 5 years. PFL is approximately related to expected annualized loss (EAL) through a site economic hazard coefficient (H) introduced here. PFL and EAL offer three advantages over PML: (1) meaningful planning period; (2) applicability in financial analysis (making seismic risk a potential market force); and (3) can be estimated using a single linear structural analysis, via a simplified method called linear assembly-based vulnerability (LABV) that is presented in this work. We also present a simple decision-analysis framework for real-estate investments in seismic regions, accounting for risk aversion. We show that market risk overwhelms uncertainty in seismic risk, allowing one to consider only expected consequences in seismic risk. We illustrate using 15 buildings, including a 7-story nonductile reinforced-concrete moment-frame building in Van Nuys, California, and 14 buildings from the CUREE-Caltech Woodframe Project

    Uncertainty Propagation and Feature Selection for Loss Estimation in Performance-based Earthquake Engineering

    Get PDF
    This report presents a new methodology, called moment matching, of propagating the uncertainties in estimating repair costs of a building due to future earthquake excitation, which is required, for example, when assessing a design in performance-based earthquake engineering. Besides excitation uncertainties, other uncertain model variables are considered, including uncertainties in the structural model parameters and in the capacity and repair costs of structural and non-structural components. Using the first few moments of these uncertain variables, moment matching requires only a few well-chosen point estimates to propagate the uncertainties to estimate the first few moments of the repair costs with high accuracy. Furthermore, the use of moment matching to estimate the exceedance probability of the repair costs is also addressed. These examples illustrate that the moment-matching approach is quite general; for example, it can be applied to any decision variable in performance-based earthquake engineering. Two buildings are chosen as illustrative examples to demonstrate the use of moment matching, a hypothetical three-story shear building and a real seven-story hotel building. For these two examples, the assembly-based vulnerability approach is employed when calculating repair costs. It is shown that the moment-matching technique is much more accurate than the well-known First-Order-Second-Moment approach when propagating the first two moments, while the resulting computational cost is of the same order. The repair-cost moments and exceedance probability estimated by the moment-matching technique are also compared with those by Monte Carlo simulation. It is concluded that as long as the order of the moment matching is sufficient, the comparison is satisfactory. Furthermore, the amount of computation for moment matching scales only linearly with the number of uncertain input variables. Last but not least, a procedure for feature selection is presented and illustrated for the second example. The conclusion is that the most important uncertain input variables among the many influencing the uncertainty in future repair costs are, in order of importance, ground-motion spectral acceleration, component capacity, ground-motion details and unit repair costs

    Vibrating quantum billiards on Riemannian manifolds

    Full text link
    Quantum billiards provide an excellent forum for the analysis of quantum chaos. Toward this end, we consider quantum billiards with time-varying surfaces, which provide an important example of quantum chaos that does not require the semiclassical (0\hbar \longrightarrow 0) or high quantum-number limits. We analyze vibrating quantum billiards using the framework of Riemannian geometry. First, we derive a theorem detailing necessary conditions for the existence of chaos in vibrating quantum billiards on Riemannian manifolds. Numerical observations suggest that these conditions are also sufficient. We prove the aforementioned theorem in full generality for one degree-of-freedom boundary vibrations and briefly discuss a generalization to billiards with two or more degrees-of-vibrations. The requisite conditions are direct consequences of the separability of the Helmholtz equation in a given orthogonal coordinate frame, and they arise from orthogonality relations satisfied by solutions of the Helmholtz equation. We then state and prove a second theorem that provides a general form for the coupled ordinary differential equations that describe quantum billiards with one degree-of-vibration boundaries. This set of equations may be used to illustrate KAM theory and also provides a simple example of semiquantum chaos. Moreover, vibrating quantum billiards may be used as models for quantum-well nanostructures, so this study has both theoretical and practical applications.Comment: 23 pages, 6 figures, a few typos corrected. To appear in International Journal of Bifurcation and Chaos (9/01

    The Impact of Cultural Familiarity on Students’ Social Media Usage in Higher Education

    Get PDF
    Using social media (SM) in Higher education (HE) becomes unavoidable in the new teaching and learning pedagogy. The current generation of students creates their groups on SM for collaboration. However, SM can be a primary source of learning distraction due to its nature, which does not support structured learning. Hence, derived from the literature, this study proposes three learning customised system features, to be implemented on SM when used in Higher Education HE. Nevertheless, some psychological factors appear to have a stronger impact on students’ adoption of SM in learning than the proposed features. A Quantitative survey was conducted at a university in Uzbekistan to collect 52 undergraduate students’ perception of proposed SM learning customised features in Moodle. These features aim to provide localised, personalised, and privacy control self-management environment for collaboration in Moodle. These features could be significant in predicting students’ engagement with SM in HE. The data analysis showed a majority of positive feedback towards the proposed learning customised SM. However, the surveyed students’ engagement with these features was observed as minimal. The course leader initiated a semi-structured interview to investigate the reason. Although the students confirmed their acceptance of the learning customised features, their preferences to alternate SM, which is Telegram overridden their usage of the proposed learning customized SM, which is Twitter. The students avoided the Moodle integrated Twitter (which provided highly accepted features) and chose to use the Telegram as an external collaboration platform driven by their familiarity and social preferences with the Telegram since it is the popular SM in Uzbekistan. This study is part of an ongoing PhD research which involves deeper frame of learners’ cognitive usage of the learning management system. However, this paper exclusively discusses the cultural familiarity impact of student’s adoption of SM in HE

    Sensitivity of Building Loss Estimates to Major Uncertain Variables

    Get PDF
    This paper examines the question of which sources of uncertainty most strongly affect the repair cost of a building in a future earthquake. Uncertainties examined here include spectral acceleration, ground-motion details, mass, damping, structural force-deformation behavior, building-component fragility, contractor costs, and the contractor's overhead and profit. We measure the variation (or swing) of the repair cost when each basic input variable except one is taken at its median value, and the remaining variable is taken at its 10th and at its 90th percentile. We perform this study using a 1960s highrise nonductile reinforced-concrete moment-frame building. Repair costs are estimated using the assembly-based vulnerability (ABV) method. We find that the top three contributors to uncertainty are assembly capacity (the structural response at which a component exceeds some damage state), shaking intensity (measured here in terms of damped elastic spectral acceleration, Sa), and details of the ground motion with a given Sa

    Cost-Effectiveness of Stronger Woodframe Buildings

    Get PDF
    We examine the cost-effectiveness of improvements in woodframe buildings. These include retrofits, redesign measures, and improved quality in 19 hypothetical woodframe dwellings. We estimated cost-effectiveness for each improvement and each zip code in California. The dwellings were designed under the CUREE-Caltech Woodframe Project. Costs and seismic vulnerability were determined on a component-by-component basis using the Assembly Based Vulnerability method, within a nonlinear time-history structural-analysis framework and using full-size test specimen data. Probabilistic site hazard was calculated by zip code, considering site soil classification, and integrated with vulnerability to determine expected annualized repair cost. The approach provides insight into uncertainty of loss at varying shaking levels. We calculated present value of benefit to determine cost-effectiveness in terms of benefit-cost ratio (BCR). We find that one retrofit exhibits BCRs as high as 8, and is in excess of 1 in half of California zip codes. Four retrofit or redesign measures are cost-effective in at least some locations. Higher quality is estimated to save thousands of dollars per house. Results are illustrated by maps for the Los Angeles and San Francisco regions and are available for every zip code in California
    corecore